References
Books references
- Arbia, G. A primer for spatial econometrics with applications in R. Palgrave Macmillan, 2014.
- VanderPlas, Jake. Python data science handbook: Essential tools for working with data. O’Reilly Media, Inc., 2016. Website
- McKinney, Wes. Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. O’Reilly Media, Inc., 2012. Website
- Anselin, Luc, and Sergio Joseph Rey. Modern spatial econometrics in practice: A guide to GeoDa, GeoDaSpace and PySAL. GeoDa Press LLC, 2014.
- Sergio J. Rey, Dani Arribas-Bel, Levi J. Wolf - Geographic Data Science with PySAL and the PyData Stack Website
Codes references
- Python Data Science Handbook: full text in Jupyter Notebooks https://github.com/jakevdp/PythonDataScienceHandbook
- A course on Geographic Data Science by Dani Arribas-Bel Website
Useful links
R
dplyr Official website https://dplyr.tidyverse.org/ ggplot2 Official website https://ggplot2.tidyverse.org/
tmap Official website https://r-tmap.github.io/tmap/
sf Official website https://r-spatial.github.io/sf/ sf cheatsheet
spdep Official website https://r-spatial.github.io/spdep/
spregression Official website https://r-spatial.github.io/spatialreg/
Python
Numpy
Official website https://numpy.org/
Pandas
Official website https://pandas.pydata.org/
Matplotlib
Official website https://matplotlib.org/
Seaborn
Official website https://seaborn.pydata.org/
GeoPandas
Official website https://geopandas.org/index.html
pySAL
Official website https://pysal.org/
Carto Frames
Official website https://carto.com/developers/cartoframes/